Presentation to the Clean Cities and Communities Coalition Network April 3, 2024

HEVISAM Heavy-duty battery Electric Vehicle Infrastructure Scenario Analysis Model

Overview & Case Studies for Port and School Bus Electrification

Amgad Elgowainy, Krishna Reddi, Sajag Poudel

Systems Assessment Center Energy Systems & Infrastructure Analysis Division Argonne National Laboratory

HEVISAM: A Technoeconomic Analysis (TEA) Tool

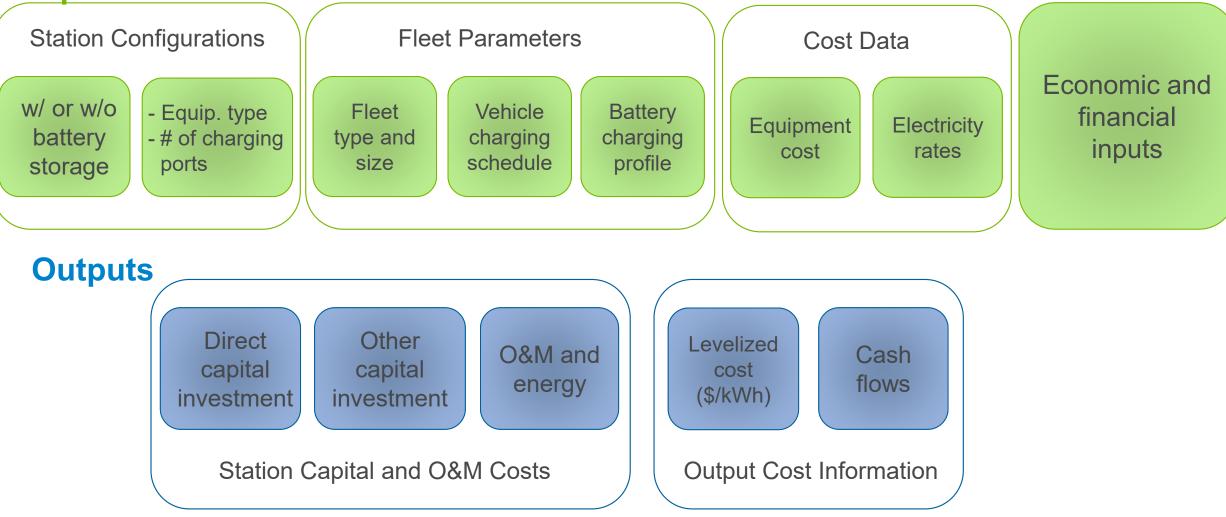
HEVISAM is an Excel-based platform for comparing the cost of recharging options for medium- and heavy-duty battery electric vehicles (BEVs).

> HEVISAM helps users identify cost drivers of current recharging technologies for various station configurations and vehicle charging demand profiles.

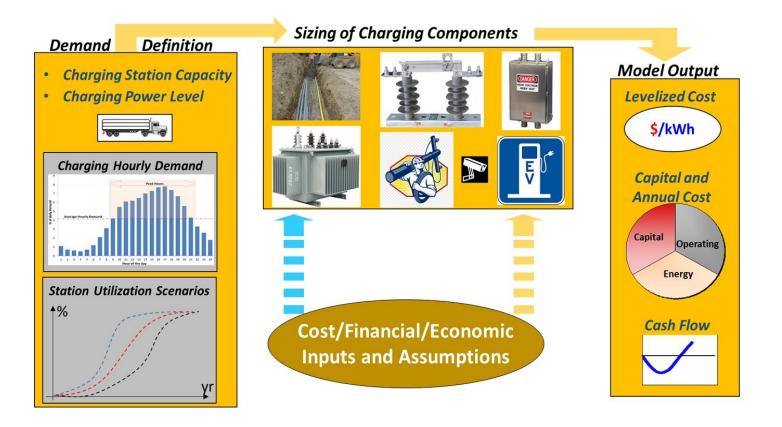
Levelized Cost of Charging (LCOC)

LCOC is the average net present cost of electricity delivered by the charging station over a defined analysis period.

LCOC calculations include:


- The capital cost, including uninstalled equipment and installation cost
- The operations and maintenance (O&M) cost
- The energy cost of the charging station
- Annual cash flows of the charging station
- Levelized charging cost in \$/kWh

HEVISAM allows users to modify charging scenarios, capital cost, electricity rates, etc., to evaluate scenarios of interest.


HEVISAM evaluates levelized cost (\$/kWh) of fast charging scenarios of BEVs

Inputs

https://hdsam.es.anl.gov/index.php?content=hevisam

HEVISAM tool leveraged HDRSAM for FCEVs

- Provides a framework with transparent assumptions and methodology
 - consistent with other DOE tools
- ✓ Systematically examines impact of various scenarios and parameters
- ✓ Informs TCO, market segmentation, ISATT, 21CTP, etc.

https://hdsam.es.anl.gov/index.php?content=hevisam

HEVISAM Data Sources

	Vehicle and Fleet parameters	Capital Costs	Energy Costs	Operating Costs	Station Configurations
Expert [*] interviews	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Vendor websites	\checkmark	\checkmark	\checkmark		
Industry reports	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Literature	\checkmark	\checkmark			\checkmark

*Including electric fleet operators, EVSE suppliers, and researchers

> Users can change charging scenarios, capital cost, electricity rates, etc., to evaluate scenarios of interest

HEVISAM: Station Configuration & Fleet Parameters

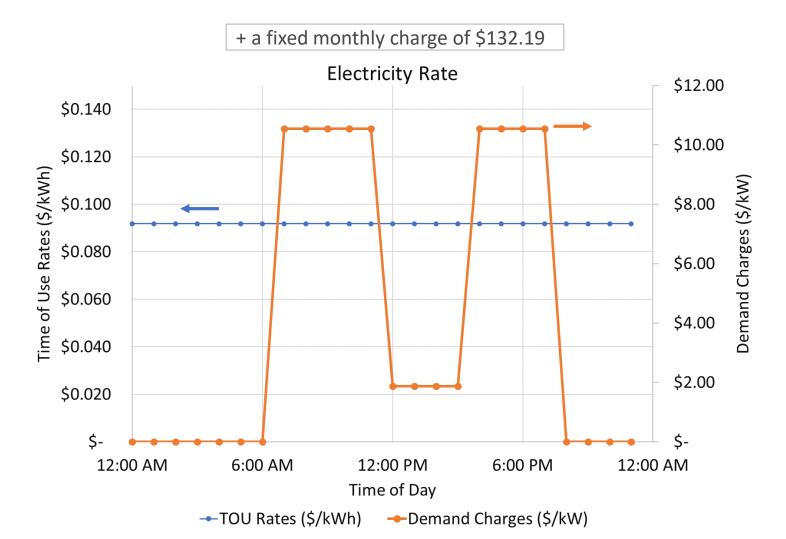
HEVISAM Simulation Setup

 # of Vehicles, corresponding battery capacity (kWh), SOC before charging (%), End of charging SOC (%) and charging start time along with the charger type (DC 150) can be assigned in HEVISAM as input parameters

A	В	С	D	E	F	G	н	1	J	к	L
1 Station In	formation			General Econom	c Assumptions						
3 Station Type	w/o energy storage			Assumed Start-up Year	2024						
	We chergy storage			Construction Period (Years	1						
5				Operating Days per Year	365						
	electricity rates			Desired Year Dollars for Co	2020						
7				Real After-tax Discount Ra	10.0%						
8				Analysis Period (Years)	30						
9				Debt Ratio (of total capital	0%						
10 Click to specify cha	rging station details			Debt Interest (nominal)	6.0%						
11				Debt Period (Years)	10						
12											
13											_
14	•			Fleet Information							4
		Number of				SOC at the	Accept	Max vehicle	Max vehicle		
	Number of vehicles	vehicles per	Total vehicle battery capacity (kWh)	SOC before charging (%)	Charging start time	end of	pantograph	charging rate	charging rate	Selected dispenser	
		dispenser per		0.017		charging (%)	charging?		pantograph (kW)	•	
15 Vehicle group		session									
16 Port cargo truck	50		180		1:00:00 AM			132		150kW, Plug-in	ОК
17 Port cargo truck	50		180	50%	3:00:00 AM	100%		132		150kW, Plug-in	ОК
18 Port cargo truck	50		180	65%	10:00:00 AM	85%		132		150kW, Plug-in	ОК
19 Port cargo truck	50		180	65%	10:30:00 AM	85%		132		150kW, Plug-in	ОК
20 Port cargo truck	50		180	50%	3:30:00 PM	80%		132		150kW, Plug-in	ОК
21 Port cargo truck	50		180	50%	4:00:00 PM	80%		132		150kW, Plug-in	ОК
22 Port cargo truck	50		180	45%	9:00:00 PM	75%		132		150kW, Plug-in	ОК
23 Port cargo truck	50	1	180	45%	9:30:00 PM	75%		132 sharrin 2	330	150kW, Plug-in	ОК
24 Select vehicle type							Pantograph			Select dispenser	_
25 Select vehicle type							Pantograph			Select dispenser	4
26 Designed station fleet size	e 100	If intending to	increase fleet size over time, please	enter final fleet informat	ion in the table above, a	and specity fle	et size for e	ach year in the	table to the righ	t.	ок
27 28											
29											
30 Cli	ck to Calculate										
31											

Economic and Financial Assumptions

• Economic assumptions including start-up year, discount rate, debt ratio, etc. can also be tailored as needed

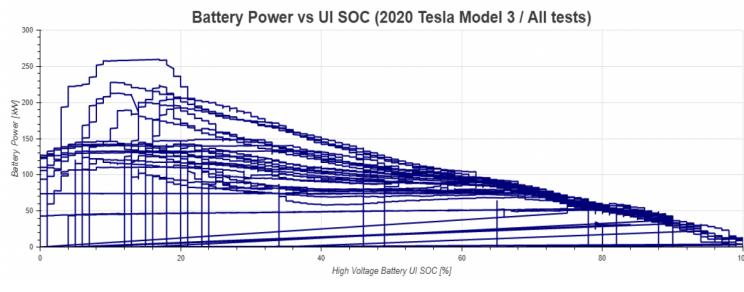

General Economic Assumptions						
Assumed Start-up Year	2024					
Construction Period (Years)	1					
Operating Days per Year	365					
Desired Year Dollars for Cost Estimates	2020					
Real After-tax Discount Rate (%)	10.0%					
Analysis Period (Years)	30					
Debt Ratio (of total capital investment)	0%					
Debt Interest (nominal)	6.0%					
Debt Period (Years)	10					
State Taxes (%)	6%					
Federal Taxes (%)	21%					
Inflation Rate (%)	2%					

Financial Assumptions for Equipment (Default for charger) Lifetime (years) 15 MACRS Depreciation Schedule Length (years) 10 **Construction Period** 1 Startup Time 1 **Salvage Value** 10% **Decommission Value** 10% % Variable Cost during Startup 75% % fixed Cost during Startup 100% % Revenue During Startup 75% percent of Capital in 1st year 100% percent of Capital in 2nd year 0% percent of Capital in 3rd year 0% percent of Capital in 4th year 0%

Assumptions: Electricity Rate

- Electricity rate can vary substantially by region, season, and the time of day.
- In HEVISAM it is convenient to enter electricity rate (time of use (TOU) & Demand Charges)
- An example of a major utility provider in New England Region is considered here

Assumptions: Equipment & Installation Cost Data


• HEVISAM has default assumptions for purchase cost, installation cost and maintenance cost of the standard DC Fast Chargers and amenities including transformer and switchgear

Equipment		Installation cost (\$/piece)	Annual Maintenance cost
150kW charger	\$61,000	\$36,000	5% of purchase cost
2500kVA transformer	\$100,000	\$30,200	1% of installed cost
480V switchgear	\$75,000	\$187,000	1% of installed cost

Battery Charging Profile

Battery charging profile depicts how the charging power changes with the battery SOC, and is particularly important for fleet charging

Source: Stutenberg et al., 2020

Battery charging profile varies with vehicle make/model and charging conditions (starting and ending battery SOC, ambient temperature, etc.)

HEVISAM Default Battery Charging Profile^{*}

Battery SOC range	Charging rate (% of max charging rate)
15-75%	100%
75-85%	75%
85-95%	50%
95-100%	25%

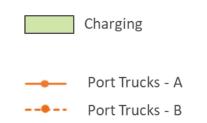
*Based on BatPaC

https://www.anl.gov/cse/batpac-model-software

Model Demonstration: Scenario Analysis for Port Equipment Charging

HEVISAM Case Study: Port Equipment Charging Port Vehicles Count & Energy Usage

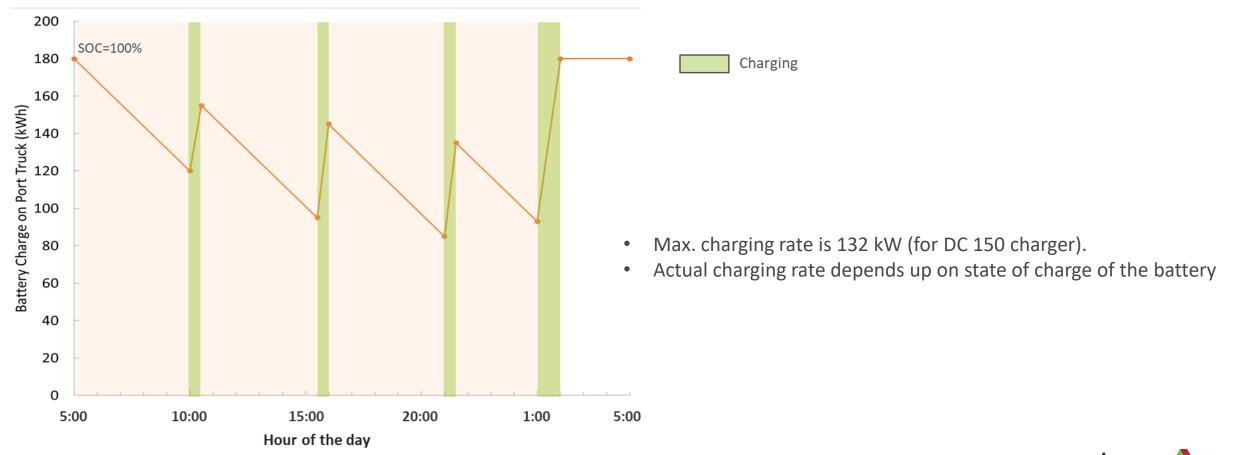

Equipment Name	Equipment Count	Battery Capacity (kWh)	Avg kW use	Preferred Charger (kW)	Designated Charging Sessions
Port Truck (Terminal Tractor)	100	180	12	150	Varying charging sessions throughout the day depending on scenario (discussed later)



HEVISAM Case Study: Port Equipment Charging Case 1 (Baseline Case)

Charging Sessions: 100 vehicles divided into 2 groups A & B

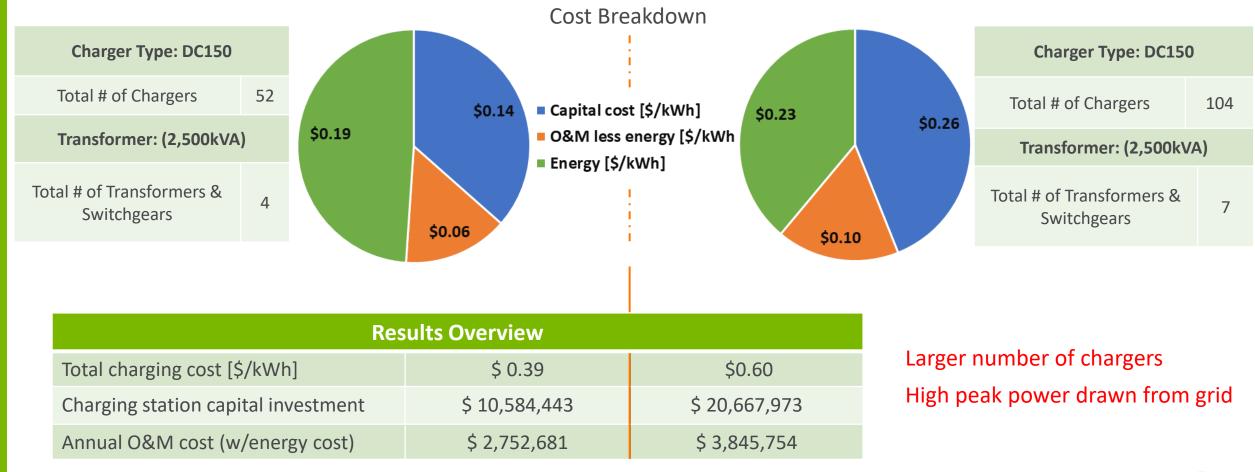
Port Equipment	Vehicle Count	Battery Capacity (kWh)	Avg kW use	Working Schedule	Charging	Schedule	Working S	chedule	Charging	Schedule	Working	Schedule	Charing	Schedule	Working	Schedule	Charging	Schedule
Port Trucks –	50	180	12	5:00 AM 10:00 AM	10:00 AM	10:30 AM	10:30 AM	3:30 PM	3:30 PM	4:00 PM	4:00 PM	9:00 PM	9:00 PM	9:30 PM	9:30 PM	1:00 AM	1:00 AM	3:00 AM
Group A	Chargi	ng/Discharging	Energy	- 60kWh	+ 35	kWh	- 60 k	Wh	+ 50	kWh	- 60 l	wh	+ 50	kWh	- 42	Wh	+87 k	Wh
Port Trucks –	50	180	12	5:00 AM 10:30 AM	10:30 AM	11:00 AM	11:00 AM	4:00 PM	4:00 PM	4:30 PM	4:30 PM	9:30 PM	9:30 PM	10:00 PM	10:00 PM	1:00 AM	3:00 AM	5:00 AM
Group B	Chargi	ng/Discharging	Energy	- 66 kWh	+ 35	kWh	- 60 k	Wh	+ 50	kWh	- 60 l	wh	+ 50	kWh	- 36	Wh	+87 k	wh


- Max. charging rate is 132 kW (for DC 150 charger).
- Actual charging rate depends up on state of charge of the battery
- 5 minutes allowed between two groups to enable transition.

HEVISAM Case Study: Port Equipment Charging Case 2

Charging Sessions: 100 vehicles at the same time

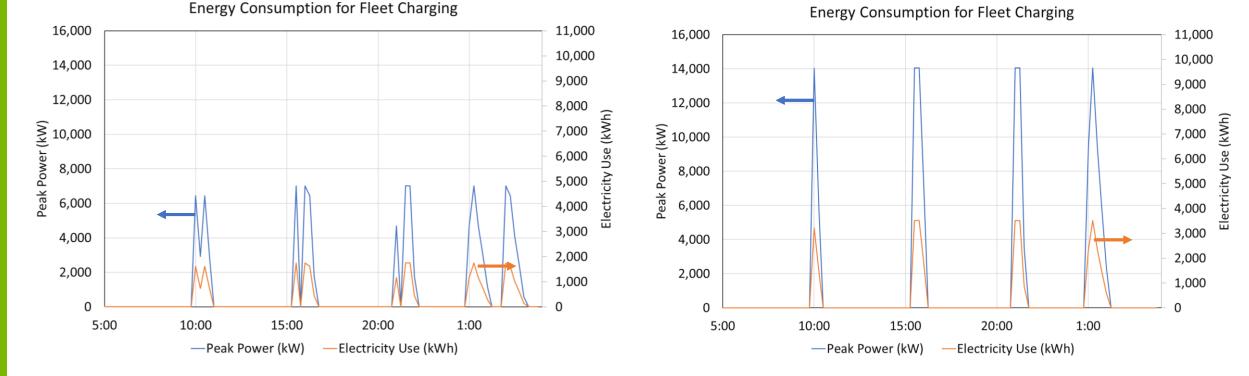
Port Equipment	Vehicle Count	Battery Capacity (kWh)	Avg kW use	Working Schedule	Charging Schedule	Working Schedule	Charging S	chedule	Working Schedule	Charing	Schedule	Working	Schedule	Charging	Schedule
	100	180	12	5:00 AM 10:00 AM	10:00 AM 10:30 AM	10:30 AM 3:30 PM	3:30 PM 4	4:00 PM	4:00 PM 9:00 PM	9:00 PM	9:30 PM	9:30 PM	1:00 AM	1:00 AM	3:00 AM
Port Trucks	Char	rging/Dischargin	g Energy	- 60kWh	+ 35 kWh	- 60 kWh	+ 50 k	Wh	- 60 kWh	+ 50) kWh	- 42	kWh	+87	kWh



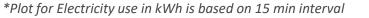
Results: Station Configuration & CostCase 1 (Baseline)Case-2

- Case Study for charging 100 vehicles
- 52 DC150 Chargers (Assuming 4% extra)
- No overlap in Charging Sessions of Port Trucks in Group A & Group B

- Case Study for charging 100 vehicles
- 104 DC150 Chargers (Assuming 4% extra)
- Simultaneous charging on 100 Port Trucks



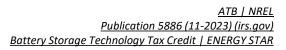
Results: Electricity Use & Peak Power

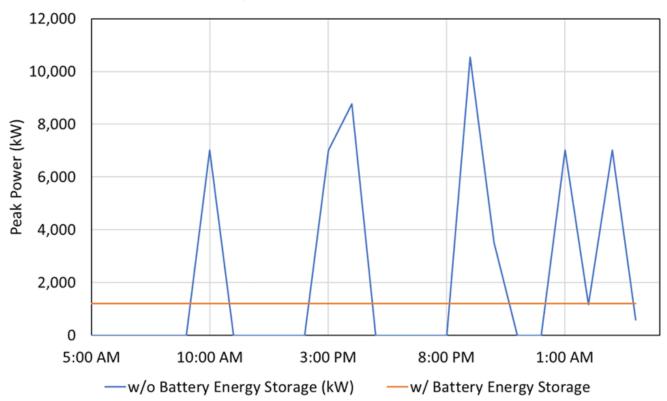

Case 1 (Baseline Case)

Case 2

Low utilization of charger High peak power drawn from grid

HEVISAM offers technoeconomic analysis of innovative charging solution by employing stationary Battery Energy Storage (BES) system that can offset the peak power during charging & reduce the cost of charging by lowering the demand charges.

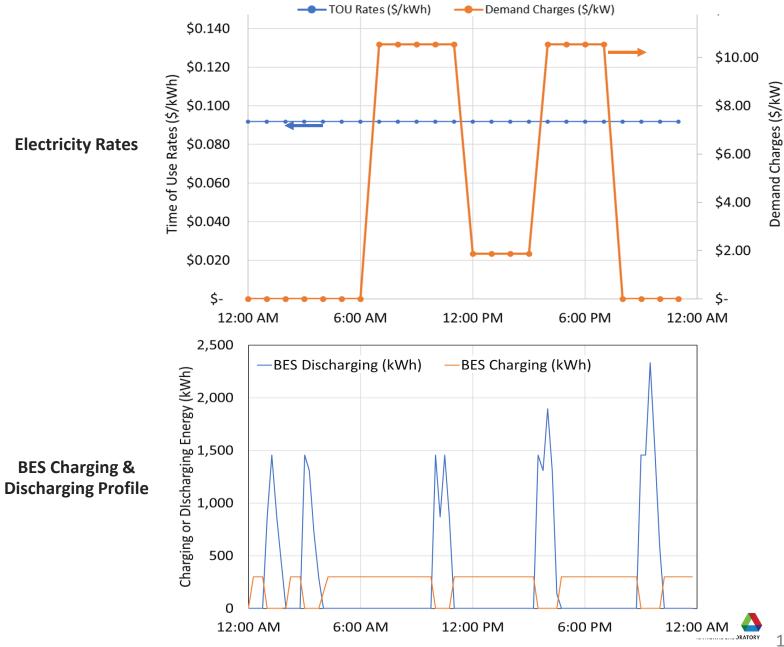

Argonne NATIONAL LABORATORY 17


Results: Charging Station with BES

Case 3 Charger with Battery Energy Storage (BES)

Assumptions:

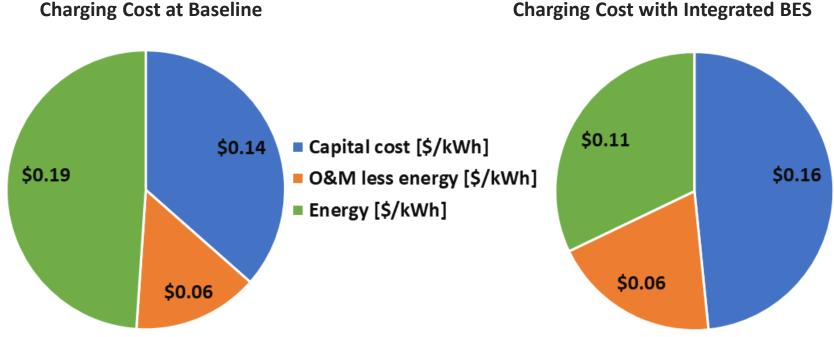
- Charging session: Consistent to Case 1
- Peak power drawn from grid is limited to 1200 kW
- Battery size: 8,000 kWh (\$2,282,145 Capital Cost)
- Average discharging rate 2,000 kW
- Battery Life: 30 years
- Cost of BES: (\$219*(kWh)+\$838*(kW)+\$192,207)
 - \$35/kWh (Manufacturing Tax Credit)
 - 30% of Total (Investment Tax Credit)


Hourly Peak Power Drawn From Grid

- BES charges during the time when electricity rate is low and discharges during the time when electricity rate is high
- Lower number of transformer/switch gears → lowering station capital cost that may partially offset battery cost
- BES offers buffer for energy storage thus providing lower impact to grid
- Savings in terms of lower grid upgrade cost & lower demand charge of electricity (not included in this analysis) Argonne

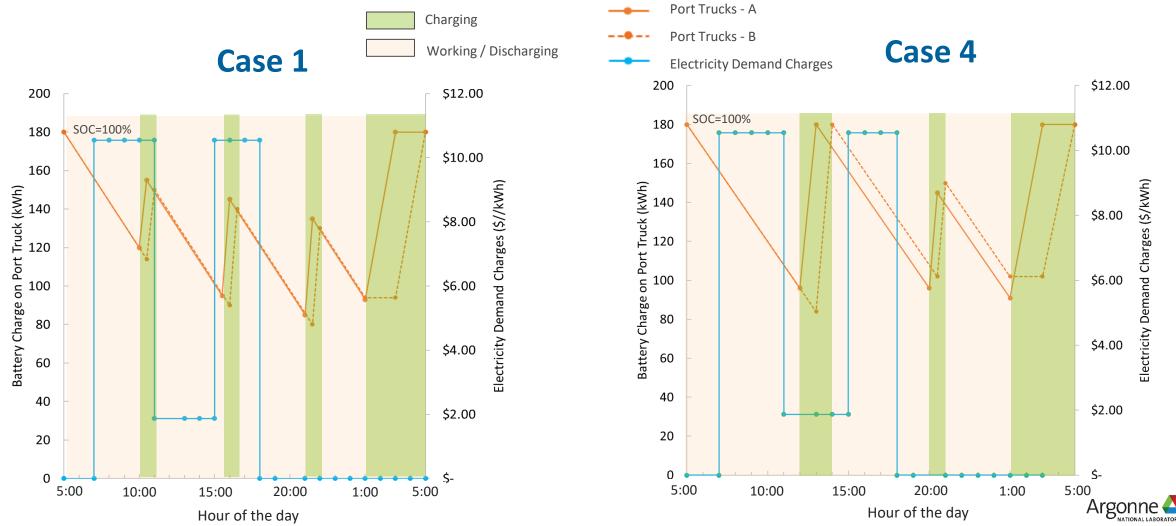
Results: Charging Station with BES

Case 3 Charger with Battery Energy Storage (BES)


Charger Type: DC1	Charger Type: DC150					
Total # of Chargers 52						
Transformer: (2,500k	XVA)					
Total # of Transformers & Switchgears	1					

Results: Comparison of Baseline & w/ BES Scenario

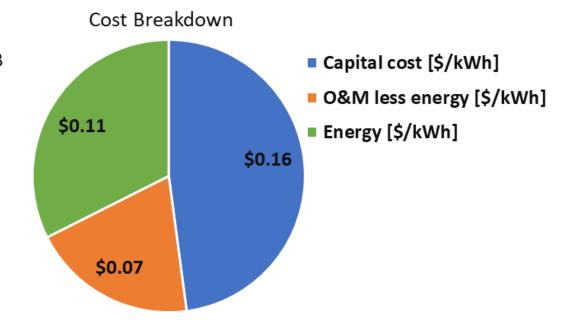
Case 3


Results Overview							
Total charging cost [\$/kWh]	\$ 0.39	\$0.33					
Charging station capital investment	\$ 10,584,443	\$ 11,802,064					
Annual O&M cost (w/energy cost)	\$ 2,752,681	\$ 1,766,564					

Despite a higher capital cost, associated with BES System, significant saving on levelized charging cost can be achieved.

20

HEVISAM Case Study: Port Equipment Charging Case 4 Opportunity Charging w/o BES

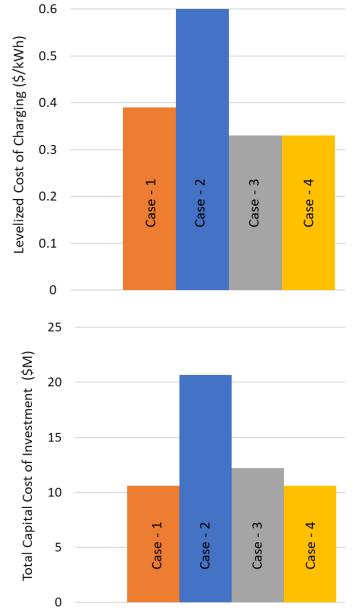

- Charging the fleet in 2 groups, consistent to Case 1 (Baseline)
- Synchronizing the charging session with the time of the day during which demand charges are low
- Potential option for ports with flexible charging/working schedules

Results: Station Configuration & Cost Case 4 Opportunity Charging w/o BES

- Case Study for charging 100 vehicles
- 52 DC150 Chargers (Assuming 4% extra)
- No overlap in Charging Sessions of Port Trucks in Group A & Group B

Charger Type: DC150						
Total # of Chargers 52						
Transformer: (2,500kVA)						
Total # of Transformers & Switchgears	4					

Results Overview						
Total charging cost [\$/kWh]	\$ 0.33					
Charging station capital investment	\$ 10,584,443					
Annual O&M cost (w/energy cost)	\$ 1,667,635					

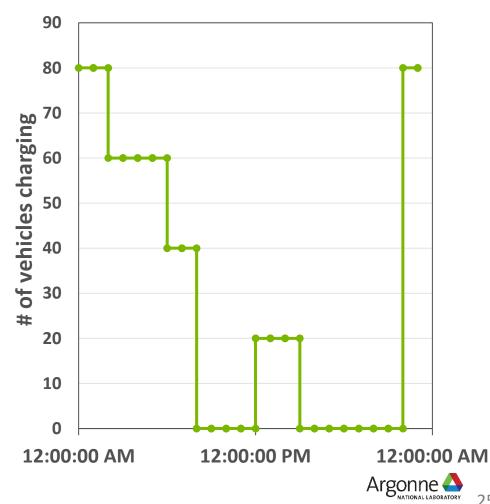


HEVISAM Case Study: Port Equipment Charging

Summary of Cases

- Case 1 (Baseline)
 - 100 port trucks divided into 2 groups
 - Total Number of Chargers Required: 52
- Case 2
 - 100 port trucks with simultaneous charging on all
 - Total Number of Chargers Required: 104
- Case 3
 - 100 port trucks divided into 2 groups
 - Charging with Battery Energy Storage (BES)
 - Total Number of Chargers Required: 52
- Case 4
 - 100 port trucks divided into 2 groups
 - Opportunity Charging without Battery Energy Storage (BES)
 - Total Number of Chargers Required: 52

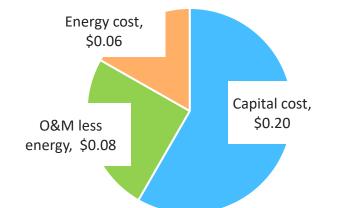
Model Demonstration: Scenario Analysis for Bus Fleet Charging



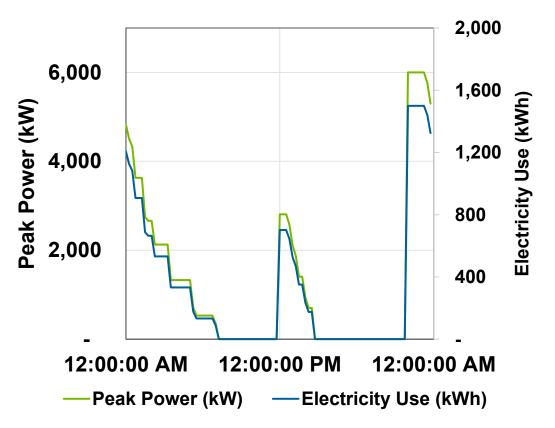
HEVISAM : Battery Electric Bus Fleet

80 battery electric buses (440 kWh each) to be charged at a depot overnight, with opportunity charging during the day.

		Group 1	Group 2	Group 3
# of buses		40	20	20
Overnight	# of buses per charger	1	1	1
	Charger rating (kW)	50	150	50
	Starting battery SOC	30%	30%	50%
	Charging start time	10pm	10pm	10pm
	Charging duration (hr)	9.16	3.50	7.25
Opportunity	# of buses per charger	N/A	N/A	1
	Charger rating (kW)	N/A	N/A	150
	Starting battery SOC	N/A	N/A	50%
	Charging start time	N/A	N/A	12pm
	Charging duration (hr)	N/A	N/A	2.75

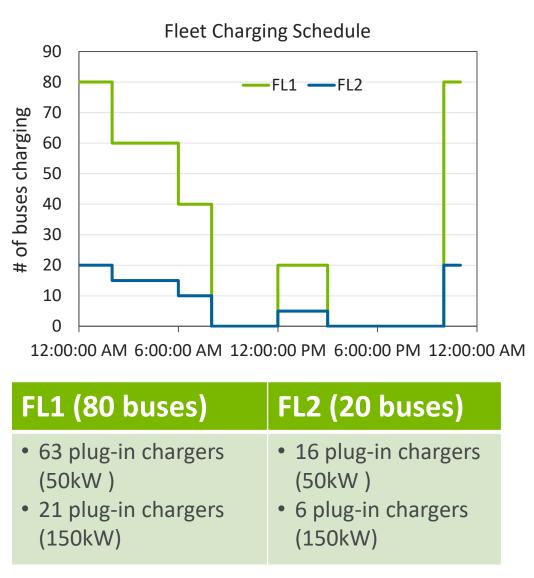


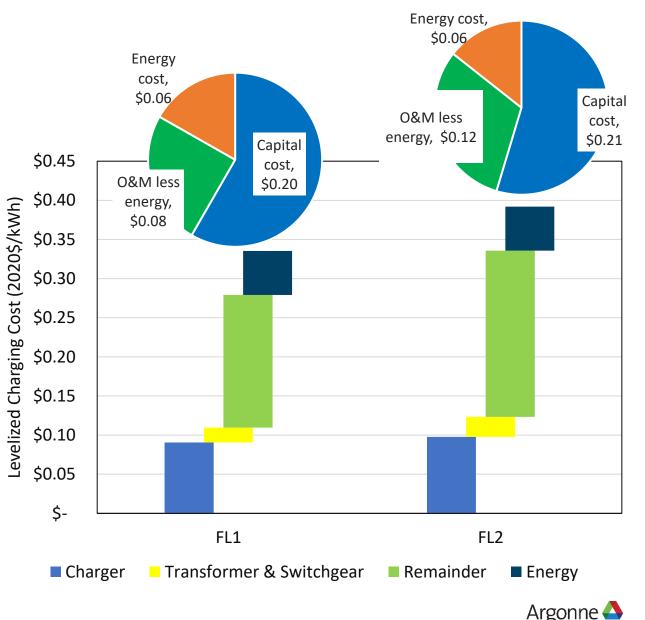
HEVISAM Case Study 2: Battery Electric Bus Fleet


Station Configuration

Charger			
Overnight charger type	50kW, plug-in		
# of units	60 active + 3 backup		
Opportunity charger type (also used for overnight charging)	150kW, plug-in		
# of units	20 active + 1 backup		
Transformer (2,500kVA)			
# of units	3		
Switchgear (480V)			
# of units	3		

Results: Levelized Charging Cost


Station Charging Power and Energy



HEVISAM Case Study 2: Battery Electric Bus Fleet

Results: Fleet Size Impact

Acknowledgement

• HEVISAM was supported by DOE's Vehicle Technologies Office (VTO)

THANK YOU

Amgad Elgowainy aelgowainy@anl.gov Krishna Reddi kreddi@anl.gov

Sajag Poudel spoudel@anl.gov

Web Site: https://hdsam.es.anl.gov/index.php?content=hevisam

